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Abstract Support vector machines (SVM) is one of the well known supervised classes
of learning algorithms. Basic SVM models are dealing with the situation where the exact
values of the data points are known. This paper studies SVM when the data points are
uncertain. With some properties known for the distributions, chance-constrained SVM is
used to ensure the small probability of misclassification for the uncertain data. As infinite
number of distributions could have the known properties, the robust chance-constrained SVM
requires efficient transformations of the chance constraints to make the problem solvable. In
this paper, robust chance-constrained SVMwith second-ordermoment information is studied
and we obtain equivalent semidefinite programming and second order cone programming
reformulations. The geometric interpretation is presented and numerical experiments are
conducted. Three types of estimation errors for mean and covariance information are studied
in this paper and the corresponding formulations and techniques to handle these types of
errors are presented.
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1 Introduction

In recent years,machine learning anddatamining have an explosive growthwith newdevelop-
ments in science and technology. Many techniques have been proposed to deal with different
datasets. The essentials of most techniques are optimization problems. Traditional machine
learning models are dealing with data when the exact values are known. This paper considers
the case when uncertainties exist in data.

As oneof thewell known supervised learning algorithms, SupportVectorMachines (SVM)
is gaining more and more attention. It was proposed by Vapnik (1998, 1999) as a maximum-
margin classifier. Tutorials on SVM could be found in Burges (1998), Abe (2010), Ben-Hur
and Weston (2010), Chang and Lin (2011). In recent years, SVM has been applied to many
fields and hasmany algorithmic andmodeling variations (Tian et al. 2012;Wang and Pardalos
2014).

Basic SVMmodels are dealing with the situation where the exact values of the data points
are known. When the data points are uncertain, different models have been proposed to for-
mulate the SVMwith uncertainties. Bi and Zhang (2005) assumed the data points are subject
to an additive noise which is bounded by norm and proposed a very direct model. However,
this model cannot guarantee a generally good performance on the uncertainty set. To guaran-
tee an optimal performance when the worst-case scenario constraints are still satisfied, robust
optimization is utilized. Trafalis and Gilbert (2006, 2007), Trafalis and Alwazzi (2010), Pant
et al. (2011), Xanthopoulos et al. (2012) proposed a robust optimization model when the
perturbation of the uncertain data is bounded by norm, where some efficient linear program-
mingmodels are presented under certain conditions.Xanthopoulos et al. (2014) studied robust
generalized eigenvalue classifier with ellipsoidal uncertainty. Ghaoui et al. (2003) derived
a robust model when the uncertainty is expressed as intervals with support and extremum
values. Fan et al. (2014) studied a more general case for polyhedral uncertainties.

Robust optimization is also used for solving SVM with chance constraints to ensure the
small probability of misclassification for the uncertain data. The chance constraints are trans-
formed by different bounding inequalities, for example multivariate Chebyshev inequality
(Bhattacharyya et al. 2004; Shivaswamy et al. 2006) and Bernstein bounding schemes (Ben-
Tal et al. 2011). The Chebyshev based model employs moment information of the uncertain
training points. The Bernstein bounds can be less conservative than the Chebyshev bounds
since it employs both support andmoment information, but it also makes a strong assumption
that all the elements in the data set are independent.

This paper studies the reformulation of robust chance-constrained SVM into equivalent
Semidefinite Programming (SDP) model and Second Order Cone Programming (SOCP)
model with second-order moment information of the uncertain data provided. Since the
moment information is often unknown but to be estimated from the data, there might be
estimation errors. This paper also considers different estimation errors and proposes corre-
spondingmodels. Comparing with literatures that have studied the chance-constrained SVM,
this paper proposes a different proof for obtaining the equivalent SOCP formulation. Similar
result has been obtained based on the Chebyshev inequality (Bhattacharyya et al. 2004; Shiv-
aswamy et al. 2006), while our paper presents an approach from optimization prospective. A
new and equivalent formulation based on SDP is proposed in this paper for the robust chance-
constrained SVM. This SDP builds a bridge between robust chance-constrained SVM and
SOCP. Besides these, three types of errors for mean and covariance information are studied
in this paper. Comparing with Bhattacharyya et al. (2004), Shivaswamy et al. (2006) for fixed
mean and covariance and Ben-Tal et al. (2011) for mean and the expectation of the square
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of each element (not general covariance matrix since it does not consider the covariance
between different elements in the feature vector), this paper considers more general cases,
and presents the corresponding formulations and techniques to handle these three types of
errors.

The structure of this paper is as follows: Sect. 2 consists of an introduction of the
robust chance-constrained SVM model. Section 3 describes the reformulation of robust
chance-constrained SVM into equivalent SDP and SOCP models, as well as the geometric
interpretation. Section 4 discusses the estimation errors and corresponding models, per-
formance measures are also discussed in this section. Section 5 contains the numerical
experiments on the equivalence and on the estimation and performance issues. Section 6
concludes this paper.

2 Robust chance-constrained SVM

SVM constructs maximum-margin classifiers, such that small perturbations in data are least
likely to cause misclassification. Empirically, SVM works really well and is a well-known
supervised learning algorithm proposed byVapnik (1998, 1999). Suppose a two-class dataset
of m data points {xi , yi }mi=1 with n-dimensional features xi ∈ R

n and respective class labels
yi ∈ {+1,−1}. For linearly separable datasets, there exists a hyperplane w�x + b = 0 to
separate the two classes and the corresponding classification rule is based on the sign(w�x+
b). If this value is positive, x is classified to be in +1 class; otherwise, −1 class.

The datapoints that the margin pushes up against are called support vectors. A maximum-
margin hyperplane is one thatmaximizes the distance between the hyperplane and the support
vectors. For the separating hyperplane w�x + b = 0, w and b could be normalized so that
w�x+b = +1 goes through the support vectors of+1 class, andw�x+b = −1 goes through
the support vectors of −1 class. The distance between these two hyperplane, i.e., the margin
width, is 2

‖w‖22
, therefore, maximization of the margin can be performed as minimization of

1
2‖w‖22 subject to separation constraints. This can be expressed as the following quadratic
optimization problem:

(SVM)

min
w,b

1

2
‖w‖22 (1a)

s.t. yi (w�xi + b) ≥ 1, i = 1, . . . ,m (1b)

The above is valid in the case that the two classes are linearly separable. When they
are not, mislabeled samples need to be allowed where soft margin SVM arises. Soft margin
SVM introduces non-negative slack variables ξi to measure the distance of within-margine or
misclassified data xi to the hyperplane with the correct label, and ξi = max{0, 1− yi (w�xi +
b)}. When 0 < ξi < 1, the data is within margine but correctly classified; when ξi > 1, the
data is misclassified. The objective function is then adding a term that penalizes these slack
variables, and the optimization is a trade off between a large margin and a small error penalty.
The soft margin SVM formulation with L1 regularization (Cortes and Vapnik 1995) is:

(SVM − SoftMargin)

min
w,b,ξi

1

2
‖w‖22 + C

m∑

i=1

ξi (2a)
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s.t. yi (w�xi + b) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . ,m (2b)

where C is a trade-off parameter.
The above soft margin SVM can be reformulated into second order cone program by

replacing the term ‖w‖22 in the objective function by a constraint upper bounding ‖w‖2 by a
constant W (Shivaswamy et al. 2006). This would imply:

min
w,b,ξi

m∑

i=1

ξi (3a)

s.t. yi (w�xi + b) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . ,m (3b)

||w||2 ≤ W (3c)

The constraint ||w||2 ≤ W is a second order cone constraint, the objective function and
other constraints are linear. So this formulation is SOCP. The difference with the original
formulation is that a direct bound W is put on ‖w‖2 instead of the trade-off parameter C
on slack variables in the objective function. It can be shown that when choosing C and W
properly, model (3) and model (2) give the same optimal values of (w, b, ξi ). Therefore, in
the following, (SVM-SoftMargin) is taken to be the basic model which could be transformed
into SOCP implicitly.

When uncertainties exist in the data points, the model needs to be modified to con-
tain the uncertainty information. Suppose there are m training data points in R

n , use
x̃i = [x̃i1, . . . , x̃in]� ∈ R

n, i = 1, . . . ,m to denote the uncertain training data points and
yi ∈ {+1,−1}, i = 1, . . . ,m to denote the respective class labels. The soft margin SVM
formulation is as following:

(SVM − Uncertainty)

min
w,b,ξi

1

2
‖w‖22 + C

m∑

i=1

ξi (4a)

s.t. yi (w�x̃i + b) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . ,m (4b)

The Chance-Constrained Program (CCP) is to ensure the small probability of misclassi-
fication for the uncertain data. The chance-constrained SVM formulation is:

(SVM − CCP)

min
w,b,ξi

1

2
‖w‖22 + C

m∑

i=1

ξi (5a)

s.t. P

{
yi (w�x̃i + b) ≤ 1 − ξi

}
≤ ε, ξi ≥ 0, i = 1, . . . ,m (5b)

where 0 < ε < 1 is a prameter given by the user and close to 0, P{·} is the probability
distribution. This model ensures an upper bound on the misclassification probability, but the
chance constraints are typically non-convex so the problem is very hard to solve.

In practice, the exact probability distribution of the random variables are often unknown
and hard to get.Only someproperties of the distribution could be acquired, such as the first and
second moments. To deal with the uncertainty in probability distribution, the distributionally
robust or ambiguous chance constraint is developed and adopted to represent a conservative
approximation of the original problem. Let P be the set of all probability distributions that
have the known properties of P, then the distributionally robust chance-constrained SVM
formulation is Shivaswamy et al. (2006), Ben-Tal et al. (2011):
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(SVM − RCCP)

min
w,b,ξi

1

2
‖w‖22 + C

m∑

i=1

ξi (6a)

s.t. sup
P∈P

P

{
yi (w�x̃i + b) ≤ 1 − ξi

}
≤ ε, ξi ≥ 0, i = 1, . . . ,m (6b)

It is easy to see that if the distributionally robust chance constraint in (SVM-RCCP) is satisfied,
then the chance constraint in (SVM-CCP) will also be satisfied under the true probability
distribution.

3 Reformulation of (SVM-RCCP) into SDP and SOCP

3.1 Reformulation of (SVM-RCCP) into SDP

Assume the first and second moment information of the random variables x̃i are known.
Let μi = E[x̃i ] ∈ R

n be the mean vector and Σ i = E
[
(x̃i − μi )(x̃i − μi )

�] ∈ S
n be the

covariance matrix of the random variable x̃i . Let P be the set of all probability distributions
that have the same first and second moments. We have the following theorem.

Theorem 1 The robust chance-constrained SVM model (SVM-RCCP) can be reformulated
as the following SDP model:

(SVM − SDP)

min
w,b,ξi ,Ni ,αi

1

2
‖w‖22 + C

m∑

i=1

ξi (7a)

s.t. αi − 1

ε
Trace(�iNi ) ≥ 0, ξi ≥ 0 (7b)

Ni � 0, Ni +
[

0 1
2 yiw

1
2 yiw

� yi b + ξi − 1 − αi

]
� 0 (7c)

where �i =
[
Σ i + μiμ

�
i μi

μ�
i 1

]
; and for matrix A, A � 0 means A is positive semidefinite.

Proof Similar to Zymler et al. (2013), for the p = sup
P∈P P{yi (w�x̃i +b) ≤ 1− ξi }, define

the indicator function

I (xi ) =
{
1, if yi (w�xi + b) ≤ 1 − ξi

0, otherwise
(8)

Then p can be expressed by the following program:

p = sup
P

∫

Rn
I (xi )P{xi }dxi (9a)

s.t.
∫

Rn
P{xi }dxi = 1 (9b)

∫

Rn
xiP{xi }dxi = μi (9c)
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∫

Rn
xix�

i P{xi }dxi = Σ i + μiμ
�
i (9d)

P{xi } ≥ 0 (9e)

The constraints guarantee thatP ∈ P . Thefirst constraint (9b) is tomake sureP is a probability
distribution. The second and third constraints (9c) and (9d) are to guarantee P has the given
first and secondmoments. Using z0i ∈ R, zi ∈ R

n andZi ∈ S
n to represent the dual variables

of the constraints, then the dual of the above program is:

p = inf
Zi ,zi ,z0i

(Σ i + μiμ
�
i ) · Zi + μ�

i zi + z0i (10a)

s.t. x�
i Zixi + x�

i zi + z0i ≥ I (xi ), ∀xi ∈ R
n (10b)

Zi ∈ S
n, zi ∈ R

n, z0i ∈ R (10c)

where the product (·) is the Frobenius inner product that for matrices A and B, A · B =∑
i j Ai j Bi j = Trace(A�B) = Trace(AB�). The strong duality condition guarantees that

the optimal values are equal (Isii 1960; Bertsimas and Popescu 2005).
The constraint (10b) can be expressed in two constraints:

x�
i Zixi + x�

i zi + z0i ≥ 0, ∀xi ∈ R
n (11a)

x�
i Zixi + x�

i zi + z0i ≥ 1, if yi (w�xi + b) ≤ 1 − ξi (11b)

Combining the variables Zi , zi , z0i into one matrix Mi could obtain:

Mi =
[
Zi

1
2zi

1
2z

�
i z0i

]
(12)

Combining the first and second moments Σ i ,μi into one matrix �i :

�i =
[
Σ i + μiμ

�
i μi

μ�
i 1

]
(13)

Then the objective function (10a) becomes Trace(�iMi ). For constraint (11a), it would be
[x�

i 1]Mi [x�
i 1]� ≥ 0,∀xi ∈ R

n , i.e. Mi � 0. For constraint (11b), S-lemma is used to
reformulate this conditioned constraint.

S-lemma Yakubovich (1971), Pólik and Terlaky (2007) says that let f, g : Rn → R be
quadratic functions and suppose that there is an x̄ ∈ R

n such that g(x̄) < 0, then the following
two statements are equivalent:

(i) There is no x ∈ R
n such that

f (x) < 0 (14a)

g(x) ≤ 0 (14b)

(ii) There is a nonnegative number y ≥ 0 such that

f (x) + yg(x) ≥ 0 ∀x ∈ R
n (15)

For constraint (11b), it is equivalent to that the following system has no solution xi ∈ R
n

such that

x�
i Zixi + x�

i zi + z0i − 1 < 0 (16a)

yiw�xi + yi b + ξi − 1 ≤ 0 (16b)
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The first function (16a) is quadratic. The second function (16b) is linear therefore a special
case of quadratic functions, and it can achieve the strict negative since it is linear and could
obtain all values inR. According to S-lemma, there exists a nonnegative number βi ≥ 0 such
that

x�
i Zixi + x�

i zi + z0i − 1 + βi (yiw�xi + yi b + ξi − 1) ≥ 0 ∀xi ∈ R
n (17)

Then the dual program becomes:

p = inf
Mi ,βi

Trace(�iMi ) (18a)

s.t. Mi � 0, βi ≥ 0 (18b)

[x�
i 1]Mi [x�

i 1]� − 1 + βi (yiw�xi + yi b + ξi − 1) ≥ 0

∀xi ∈ R
n (18c)

The whole program becomes:

min
w,b,ξi ,Mi ,βi

1

2
‖w‖22 + C

m∑

i=1

ξi (19a)

s.t. Mi � 0, βi ≥ 0, ξi ≥ 0 (19b)

Trace(�iMi ) ≤ ε (19c)

[x�
i 1]Mi [x�

i 1]� − 1 + βi (yiw�xi + yi b + ξi − 1) ≥ 0

∀xi ∈ R
n (19d)

Since w, b, ξi and βi are all decision variables, it is needed to get rid of the bilinear terms
in βi (yiw�xi + yi b + ξi − 1).

First it could be verified that βi cannot be zero since Trace(�iMi ) ≤ ε, and 0 < ε < 1.
If βi = 0, then (19d) would imply [x�

i 1]Mi [x�
i 1]� ≥ 1 > ε, ∀xi ∈ R

n . According
to the cyclic property of trace, Trace(ABC) = Trace(BCA) = Trace(CAB), therefore,

[x�
i 1]Mi [x�

i 1]� = Trace([x�
i 1]Mi [x�

i 1]�) = Trace
([

xi
1

]
[x�

i 1]Mi

)
≥ 1 > ε, ∀xi ∈ R

n .

Since �i =
[
Σ i + μiμ

�
i μi

μ�
i 1

]
= E

[[
x̃i
1

]
[x̃�

i 1]
]
, this produces a contradiction. Therefore,

βi > 0. Then (19d) could be divided by βi and imply

[x�
i 1]

Mi

βi
[x�

i 1]� − 1

βi
+ (yiw�xi + yi b + ξi − 1) ≥ 0 ∀xi ∈ R

n (20)

For the constraint (19c), since ε > 0, it is equivalent to 1
ε
Trace(�iMi ) − 1 ≤ 0. And

since βi > 0, it could further get

1

ε
Trace

(
�i

Mi

βi

)
− 1

βi
≤ 0 (21)

Replace Mi
βi

with Ni � 0, and 1
βi

with αi > 0, then the two constraints (19c) and (19d)
become

1

ε
Trace(�iNi ) − αi ≤ 0 (22a)

[x�
i 1]Ni [x�

i 1]� − αi + (yiw�xi + yi b + ξi − 1) ≥ 0 ∀xi ∈ R
n (22b)
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where the second constraint (22b) could further be expressed as a semidefinite constraint as:

Ni +
[

0 1
2 yiw

1
2 yiw

� yi b + ξi − 1 − αi

]
� 0 (23)

αi > 0 is guaranteed since Ni � 0 and 1
ε
Trace(�iNi ) − αi ≤ 0.

Then the whole program becomes:

min
w,b,ξi ,Ni ,αi

1

2
‖w‖22 + C

m∑

i=1

ξi (24a)

s.t. αi − 1

ε
Trace(�iNi ) ≥ 0, ξi ≥ 0 (24b)

Ni � 0, Ni +
[

0 1
2 yiw

1
2 yiw

� yi b + ξi − 1 − αi

]
� 0 (24c)

This completes the proof. 
�
The nonlinear term ‖w‖22 in the objective function could be replaced by a constraint upper

bounding ‖w‖2 by a constant W (Shivaswamy et al. 2006). The adding constraint would be
‖w‖2 ≤ W and the objective function would change to

∑m
i=1 ξi . ‖w‖2 ≤ W is a second

order cone constraint, and it is contained by semi-definite programs, with a standard SDP
form as

‖w‖2 ≤ W ⇐⇒
[
W In w
w� W

]
� 0 (25)

where In is the n × n identity matrix.
The standard SDP formulation of (SVM-SDP) is

min
w,b,ξi ,Ni ,αi

m∑

i=1

ξi (26a)

s.t. αi − 1

ε
Trace(�iNi ) ≥ 0, ξi ≥ 0, i = 1, . . . ,m (26b)

Ni � 0, Ni +
[

0 1
2 yiw

1
2 yiw

� yi b + ξi − 1 − αi

]
� 0, i = 1, . . . ,m (26c)

[
W In w
w� W

]
� 0 (26d)

This formulation would have the same optimal values for the decision variables with
(SVM-SDP) when choosing C and W properly.

3.2 Reformulation of (SVM-RCCP) into SOCP

SDP models are generally complicated when computing. SOCP model is a special case of
SDP models, but with less variables and more efficient algorithms. The following theorem
is to yield SOCP constraints from SDP constraints.

Theorem 2 The following SDP constraints could yield the following SOCP constraints:

αi − 1

ε
Trace(�iNi ) ≥ 0, Ni � 0, Ni +

[
0 1

2 yiw
1
2 yiw

� yi b + ξi − 1 − αi

]
� 0

�⇒ yi (w�μi + b) ≥ 1 − ξi +
√
1 − ε

ε

∥∥∥∥Σ
1
2
i w

∥∥∥∥
2

(27)
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Proof First consider the following problem:

inf
b,ξi ,Ni ,αi

yi b + ξi − 1 (28a)

s.t. αi − 1

ε
Trace(�iNi ) ≥ 0 (28b)

Ni � 0 (28c)

Ni +
[

0 1
2 yiw

1
2 yiw

� yi b + ξi − 1 − αi

]
� 0 (28d)

Let γi , Ci , Di =
[
Di di
d�
i d0i

]
represent the dual variables of the constraints (28b), (28c),

and (28d). Then the Lagrangian is Ghaoui et al. (2003):

inf
b,ξi ,Ni ,αi

sup
γi≥0,Ci�0,Di�0

L (w, b, ξi ,Ni , αi , γi ,Ci ,Di )

= yi b + ξi − 1 − γi

(
αi − 1

ε
Trace(�iNi )

)
− Trace(CiNi )

− Trace

(
Di ,Ni +

[
0 1

2 yiw
1
2 yiw

� yi b + ξi − 1 − αi

])

= yi b + ξi − 1 − γiαi + γi

ε
Trace(�iNi ) − Trace(CiNi )

− Trace(Di ,Ni ) − yiw�di − d0i (yi b + ξi − 1 − αi )

= (yi b + ξi − 1)(1 − d0i ) − (γi − d0i )αi + Trace
(γi

ε
�i − Ci − Di ,Ni

)

− yiw�di

(29)

This dual function is finite if and only if

1 − d0i = 0, γi − d0i = 0,
γi

ε
�i − Ci − Di = 0 (30)

Therefore, γi = 1 and 1
ε
�i − Di = Ci � 0.

Then the dual problem of (28) is:

sup
Di

− yiw�di (31a)

s.t.
1

ε
�i � Di � 0 (31b)

Since �i =
[
Σ i + μiμ

�
i μi

μ�
i 1

]
, Di =

[
Di di
d�
i d0i

]
, d0i = 1, and 0 < ε < 1, the constraint

(31b) is equivalent to
[
Σ i + μiμ

�
i − εDi μi − εdi

μ�
i − εd�

i 1 − ε

]
� 0,

[
εDi εdi
εd�

i ε

]
� 0 (32)

According to Schur Complement Lemma, for symmetric matrix S =
[
A B
B� C

]
, where C

is positive definite, then S � 0 ⇐⇒ A − BC−1B� � 0. Therefore, (32) is equivalent to

Σ i + μiμ
�
i − εDi − 1

1 − ε
(μi − εdi )(μi − εdi )� � 0, εDi − 1

ε
εdiεd�

i � 0 (33)
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i.e.,

Σ i + μiμ
�
i − 1

1 − ε
(μi − εdi )(μi − εdi )� � εDi � εdid�

i (34)

The above constraint (34) holds for some Di if and only if

Σ i + μiμ
�
i � 1

1 − ε
(μi − εdi )(μi − εdi )� + εdid�

i (35)

Expand the above constraint

Σ i + μiμ
�
i � 1

1 − ε
μiμ

�
i − ε

1 − ε
μid

�
i − ε

1 − ε
diμ�

i + ε2

1 − ε
did�

i + εdid�
i

= 1

1 − ε
μiμ

�
i − ε

1 − ε
(μid

�
i + diμ�

i ) + ε

1 − ε
did�

i

(36)

It is equivalent to

Σ i � ε

1 − ε
(μi − di )(μi − di )� (37)

The dual problem (31) becomes

sup
di

− yiw�di (38a)

s.t.
1 − ε

ε
Σ i − (μi − di )(μi − di )� � 0 (38b)

From the constraint (38b), we have

yiw�
(
1 − ε

ε
Σ i − (μi − di )(μi − di )�

)
yiw ≥ 0 (39)

Since yi ∈ {+1,−1}, we have y2i = 1. Then

(yiw�μi − yiw�di )2 ≤ 1 − ε

ε
w�Σ iw (40)

Therefore,

− yiw�di ≤
√
1 − ε

ε

∥∥∥∥Σ
1
2
i w

∥∥∥∥
2
− yiw�μi (41)

In problem (38), di is the only decision variable, therefore, for (41), di is the only variable

and the equality could be obtained. The maximum value of −yiw�di is
√

1−ε
ε

‖Σ
1
2
i w‖2 −

yiw�μi .
Combine the primal problem (28) and the above result for the dual problem, it could yield

that √
1 − ε

ε

∥∥∥∥Σ
1
2
i w

∥∥∥∥
2
− yiw�μi ≤ yi b + ξi − 1 (42)

Or equivalently,

yi (w�μi + b) ≥ 1 − ξi +
√
1 − ε

ε

∥∥∥∥Σ
1
2
i w

∥∥∥∥
2

(43)

This completes the proof. 
�
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A direct way to reformulate (SVM-RCCP) into SDPmodel is to usemultivariate Chebyshev
inequality (Bhattacharyya et al. 2004; Shivaswamy et al. 2006). Let x̃ ∼ (μ,Σ) denote ran-
dom vector x̃ with mean μ and convariance matrix Σ , the multivariate Chebyshev inequality
(Marshall and Olkin 1960; Bertsimas and Popescu 2005) states that for an arbitrary closed
convex set S, the supremum of the probability that x̃ takes a value in S is

sup
x̃∼(μ,Σ)

P{x̃ ∈ S} = 1

1 + d2
(44a)

d2 = inf
x∈S(x − μ)�Σ−1(x − μ) (44b)

For SVM constraint, the S = {y(w�x + b) ≤ 1 − ξ} is a half-space produced by a
hyperplane and therefore a closed convex set, using the above inequality we could obtain
(Lanckriet et al. 2002)

sup
x̃∼(μ,Σ)

P

{
y(w�x̃ + b) ≤ 1 − ξ

}
= 1

1 + d2
(45)

where d2 = inf y(w�x+b)≤1−ξ (x − μ)�Σ−1(x − μ).
When y(w�μ+b) ≤ 1−ξ , then take x = μ could get d2 = 0 and supx̃∼(μ,Σ) P{y(w�x̃+

b) ≤ 1− ξ} = 1, which is trivial and this condition would be invalid when the bound ε < 1.
When y(w�μ+b) > 1−ξ , letu = Σ−1/2(x−μ), v = yΣ1/2w and γ = −y(w�μ+b)+

1 − ξ < 0, then d2 = infv�u≤γ u�u. And the Lagrangian is L(u, λ) = u�u + λ(v�u − γ )

with λ ≥ 0. Take the derivative to be zero, at the optimum, 2u = λv and v�u = γ . Therefore,

d2 = inf
y(w�x+b)≤1−ξ

(x − μ)�Σ−1(x − μ) = u�u = γ 2

v�v

=
(
y(w�μ + b) − 1 + ξ

)2

w�Σw

(46)

For supx̃∼(μ,Σ) P{y(w�x̃ + b) ≤ 1 − ξ} ≤ ε, it is equivalent to 1/(1 + d2) ≤ ε, or d2 ≥
(1 − ε)/ε. Since y(w�μ + b) > 1 − ξ , i.e. y(w�μ + b) − 1 + ξ > 0, therefore

y(w�μ + b) − 1 + ξ ≥
√
1 − ε

ε

∥∥∥Σ
1
2w

∥∥∥
2

(47)

Applying the above result to (SVM-RCCP), the Chebyshev based reformulation could be
achieved utilizing the mean μi and covariance matrix Σ i of each uncertain training point x̃i
as the following robust model (Bhattacharyya et al. 2004; Shivaswamy et al. 2006):

(SVM − SOCP)

min
w,b,ξi

1

2
‖w‖22 + C

m∑

i=1

ξi (48a)

s.t. yi (w�μi + b) ≥ 1 − ξi +
√
1 − ε

ε

∥∥∥∥Σ
1
2
i w

∥∥∥∥
2

(48b)

ξi ≥ 0, i = 1, . . . ,m (48c)
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3.3 The geometric interpretation of (SVM-SOCP)

The geometric interpretation of the SOCP constraint is that, for each point xi , it is no longer a

single point, but an ellipsoid centered atμi , and shapedwith the covariancematrix
√

1−ε
ε

Σ
1
2
i :

E

(
μi ,

√
1 − ε

ε
Σ

1
2
i

)
=

{
x = μi +

√
1 − ε

ε
Σ

1
2
i a : ‖a‖2 ≤ 1

}
(49)

The SOCP constraint (48b) is satisfied if and only if

yi (w�xi + b) ≥ 1 − ξi , ∀xi ∈ E

(
μi ,

√
1 − ε

ε
Σ

1
2
i

)
(50)

Therefore, this constraint is defining an uncertainty set E
(
μi ,

√
1−ε
ε

Σ
1
2
i

)
for each uncer-

tain training data point xi . If all the points in the uncertainty set satisfy yi (w�xi +b) ≥ 1−ξi ,
then the chance-constraint is guaranteed to be satisfied. This transforms the RCCP into a
robust optimization problem over the uncertainty set.

Figure 1 shows how the SVM works when the fixed data points are replaced with their
corresponding ellipsoid uncertainty sets. Figure 1a is the original data. The red line is the
separating line w�x + b = 0. The blue and green dash lines are the lines passing through
the support vectors, i.e., the lines w�x + b = ±1. As shown in the plot, the margin width,

Fig. 1 Geometric interpretation of SVM classfier for data with different uncertainty sets
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i.e., the distance between these two dash lines are maximized on the data. It is worth noting
that not all points are support vectors in this figure. In Fig. 1b, the data are enclosed into
ellipsoid uncertainty sets, the lines are the same meaning as Fig. 1a. So instead of making
the single points to be on the right side of the margin, the dash lines should make the whole
ellipsoids to be beyond the margin. From this plot, it could be seen that the green dash line are
forced to be tangent to the two green ellipsoids from the inner side. But this is not always the
case. Figure 1c shows a case when both dash lines are only tangent to one ellipsoid each, but
still obtain the maximum margin classifier. Figure 1d shows how the size of the uncertainty
set would affect the classifier. All the other settings are the same with Fig. 1c, except that
the lower blue point now has a larger uncertainty set. To make this uncertainty set satisfy
the constraint, the separating lines are pushed up as shown in the plot, and the upper blue
ellipsoid is not touching the margin line any more.

4 Estimation errors and performance measures

In practice, the distribution properties are often unknown but need to be estimated from
data. For example, if an uncertain data point x̃i = [x̃i1, . . . , x̃in]� has N samples xik , k =
1, . . . , N , then the sample mean x̄i = 1

N

∑N
k=1 xik is used to estimate the mean vector

μi = E[x̃i ], and the sample covariance Si = 1
N−1

∑N
k=1(xik − x̄i )(xik − x̄i )� is used to

estimate the covariance matrix Σ i = E
[
(x̃i − μi )(x̃i − μi )

�]
. However, these could cause

possible estimation errors. For example, the sample mean x̄i itself is a random vector, with
mean equal to μi , and the variance of the j th element is equal to σ 2

i j/N , where σ 2
i j is the

variance of the random variable x̃i j and unknown. Three special cases when the mean vector
μi and covariance matrix Σ i are not exactly known are discussed here.

The first case is when μi ∈ [μ−
i ,μ+

i ], and Σ i = Si does not have variance. The
interval of μi actually works for each element in the vector, i.e. μi j ∈ [μ−

i j , μ
+
i j ], j =

1, . . . , n. As a robust reformulation of the (SVM-SOCP) model, the constraint (48b) becomes
∑

j min(yiμ
−
i jw j , yiμ

+
i jw j ) + yi b ≥ 1 − ξi +

√
1−ε
ε

‖Σ
1
2
i w‖2, and the whole model could

be written as:

(SVM − SOCP − Mu1)

min
w,b,ξi

1

2
‖w‖22 + C

m∑

i=1

ξi (51a)

s.t.
∑

j

zi j + yi b ≥ 1 − ξi +
√
1 − ε

ε

∥∥∥∥Σ
1
2
i w

∥∥∥∥
2

(51b)

zi j ≤ yiμ
−
i jw j , zi j ≤ yiμ

+
i jw j (51c)

ξi ≥ 0, i = 1, . . . ,m (51d)

This case could be applied when the confidence interval of μi j could be estimated. For a
random variable x̃i j with normal distribution, and N samples xi jk , k = 1, . . . , N , the sample
mean x̄i j = 1

N

∑N
k=1 xi jk , the unbiased sample variance s2i j = 1

N−1

∑N
k=1(xi jk − x̄i j )2, then

x̄i j−μi j

si j /
√
N

∼ tN−1. The confidence interval of μi j is [x̄i j − tcri t · si j/
√
N , x̄i j + tcri t · si j/

√
N ],

where tcri t is the coefficient corresponding to the confidence level 1 − α and the degree of
freedom N −1. For n-dimensional vector x̃i ∈ R

n , the Bonferroni correction factor uses α/n
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instead of α for each of the n univariate confidence interval. The geometric interpretation of
this case is that, for each point xi , it is replaced by a union of ellipsoids, with center varies

in the hyper-rectangle [μ−
i ,μ+

i ], and shaped with the covariance matrix
√

1−ε
ε

Σ
1
2
i .

The second case iswhen (μi−x̄i )�Σ−1
i (μi−x̄i ) ≤ ν2i , andΣ i = Si has novariance. Since

the Bonferroni correction is for the case when the random variables x̃i j in x̃i are independent,
it would over-correct and result in lower α and larger robust region than it needs to be when
they are not independent. The Hotelling’s T-square test statistic T 2 = N (x̄−μ)�S−1(x̄−μ),
and it has the property that N−n

n(N−1)T
2 ∼ F(n, N − n). Then the confidence region for μi is

T 2 ≤ n(N−1)
N−n Fcrit , i.e., (μi −x̄i )�S−1

i (μi −x̄i ) ≤ n(N−1)
N (N−n)

Fcrit , where Fcrit is the coefficient

corresponding to the confidence level 1− α and the degree of freedom (n, N − n). Let ν2i =
n(N−1)
N (N−n)

Fcrit , the geometric interpretation is that, the mean vector μi varies in an ellipsoid

centered at x̄i and shaped with νiΣ
1
2
i . Then the uncertainty set for each point xi is a union of

ellipsoids, with center varies in the ellipsoid E
(
x̄i , νiΣ

1
2
i

)
, and shaped with

√
1−ε
ε

Σ
1
2
i . This

has a more concise form that the union of these ellipsoids is also an ellipsoid E (x̄i ,
(√ 1−ε

ε
+

νi
)
Σ

1
2
i ). Lanckriet et al. (2002) also proved this mathematically. The model is then:

(SVM − SOCP − Mu2)

min
w,b,ξi

1

2
‖w‖22 + C

m∑

i=1

ξi (52a)

s.t. yi (w�μi + b) ≥ 1 − ξi +
(√

1 − ε

ε
+ νi

) ∥∥∥∥Σ
1
2
i w

∥∥∥∥
2

(52b)

ξi ≥ 0, i = 1, . . . ,m (52c)

The third case is when μi = x̄i has no variance, but the covariance matrix has estimation
uncertainty ‖Σ i − Si‖F ≤ ρi , where the matrix norm is the Frobenius norm ‖A‖2F =
Trace(A�A) = ∑

i j A
2
i j . Lanckriet et al. (2002) proved that in this case, the uncertainty set

becomes E
(
μi ,

√
1−ε
ε

(
Σ i + ρi In

) 1
2
)
. And the model is:

(SVM − SOCP − Cov)

min
w,b,ξi

1

2
‖w‖22 + C

m∑

i=1

ξi (53a)

s.t. yi (w�μi + b) ≥ 1 − ξi +
√
1 − ε

ε

∥∥∥
(
Σ i + ρi In

) 1
2w

∥∥∥
2

(53b)

ξi ≥ 0, i = 1, . . . ,m (53c)

The geometric interpretations of the three cases are shown in Fig. 2. Figure 2a is when
μi ∈ [μ−

i ,μ+
i ]. The blue ellipsoid is the original robust region. The green solid rectangle is

the area thatμi can be varied. The green dash ellipsoids are the robust regions whenμi varies
in [μ−

i ,μ+
i ]. And the big blue boundary is the resulting robust region of this case. Figure 2b

is when (μi − x̄i )�Σ−1
i (μi − x̄i ) ≤ ν2i . The small blue ellipsoid is the original robust region.

The green solid ellipsoid and green dash ellipsoids have similar meaning as in Fig. 2a. The
resulting robust region is the big blue ellipsoid. Figure 2c is when ‖Σ i − Si‖F ≤ ρi . The

123



www.manaraa.com

Ann Oper Res (2018) 263:45–68 59

Fig. 2 Geometric interpetation of different estimation errors

inner blue ellipsoid and outer ellipsoid represent the original and resulting robust region,
respectively. In this case, the shape of the ellipsoids changed because the matrices changed
for the ellipsoids.

Since now the data points are uncertain, the performance measures are worth discussed.
One direct way is to use the Test Set Accuracy (TSA) which is computed by counting the
number of correctly predicted labels in the test data set and divided by the size of the test set.
The class label yi is decided by the sign(w�xi +b). When there are replicates xik for the test
point xi , the class label yi is decided by the majority label of the replicates sign(w�xik + b).

Another way is proposed by Ben-Tal et al. (2011) to use the nominal error and optimal
error. The nominal error is similar to TSA but the opposite, i.e., TSA + NomErr = 1. The
expression for NomErr is:

NomErr =
∑

i 1y pri �=yi

# test datapoints
× 100% (54)

The optimal error is calculated based on the probability of misclassification. For
sup

P∈P P{yi (w�x̃i + b) ≤ 0} ≤ ε, it can be similarly transformed into yi (w�μi + b) ≥√
1−ε
ε

‖Σ
1
2
i w‖2. And this could derive that the least value of ε is

εopt = w�Σ iw
(w�μi + b)2 + w�Σ iw

(55)

Then the OptErr of the data point xi is

OptErri =
{
1, if y pri �= yi
εopt , if y pri = yi

(56)

And the OptErr of the whole test set is

OptErr =
∑

i OptErri
# test datapoints

× 100% (57)

5 Numerical experiments

5.1 The equivalence of (SVM-SDP) and (SVM-SOCP)

The model (SVM-SDP) and model (SVM-SOCP) are equivalent since they both use the exact
supremum of the chance constraints sup

P∈P P{yi (w�x̃i + b) ≤ 1 − ξi } and both based
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Fig. 3 Sythetic data
classification result

on the exact means and covariance matrices of the random data points. Multiple numerical
experiments in MATLAB using SeDuMi solver for both models on YALMIP platform also
show that these two formulations would obtain the same result.

In numerical experiments, to make the results easier to interpret, firstly, synthetic data is
generated using 2-dimensional normal distribution with the +1 class generated by normal
distribution with μ+ = [1, 1]�, Σ+ = I the identity matrix, and −1 class generated by
normal distribution with μ− = [−1,−1]�, Σ− = I, each class has 50 points. Then for each
class, 10 points are randomly picked as the training points, the rest are the test points. We
need to get theμi andΣ i for each training point. In our experiment,μi is set to be the current
value of the point, Σ i is calculated based on the convariance matrix of the training points
for each class. For example, for the +1 class, we have 10 training points, then we calculated
the covariance matrix of these 10 points, and multiplied by 0.01 to shrink the area that each
points could move. This shrinking effect is to make the ellipsoid size to be 1/10 of the original
covariance matrix ellipsoid and is reasonable as an uncertainty set for each data point. With
these values, we tested both models and get Fig. 3.

In Fig. 3, the blue circles are the points of the +1 class with the ones filled inside with
cyan color indicating the training points, and the rest are test points. The green triangles
are the points of the −1 class with the ones filled inside with magenta color indicating the
training points, and the rest are test points. The blue ellipsoid is drawn based on the training

points mean and covariance matrix of the +1 class with the expression E
(
μ+,Σ

1
2+
) = {x =

μ+ +Σ+
1
2 a : ‖a‖2 ≤ 1}. The green ellipsoid is drawn similarly for the−1 class. These two

ellipsoid could give us some direct impression for the distribution of the training samples.
And to shrink the ellipsoid size to be the uncertainty set for each training point is much more
reasonable than to directly use these original big ellipsoids shown in the figure. The red solid
line is the separating line w�x + b = 0 calculated by both the SDP and SOCP models. The
blue and green dash lines are the margin lines, i.e., the lines w�x + b = ±1.

Figure 3 shows only one red line, one blue dash line, and one green dash line. In fact, the
separating and margin lines calculated by both models are drawn in this plot. One line means
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Fig. 5 First two principle
components of Wisconsin breast
cancer data

the two models are getting exactly the same result. The running time for both models are
also shown in this figure. As SDP models have much more variables than the SOCP model,
and the intrinsic complexity than the SOCP model, the SDP took longer time than the SOCP
model. The TSA for this experiment is 91.25%.

To compare how the chance constraint probability controller ε would affect the perfor-
mance of the models, we fix the training and test point. By changing only the value of ε,
we have Fig. 4a. It shows that the SDP model and SOCP model are getting the same result
no matter how ε changes, while the SOCP model is more efficient than the SDP model.
Generally, small ε values would need a longer running time. The test-set accuracy does not
have common trend with ε when different data are generated randomly in different runs. And
it highly depends on the split of the training set and test set as shown in Fig. 4b. It shows that
the SDP model and SOCP models are still getting the same result even though the training
points are changing between runs. Besides this, another important aspect of this figure is that
with the same data set, how the split of the training set and test set would dramatically change
the separation line. To test the equivalence of the two models, we also used Σ i = 0.01I for
the synthetic data, and the results from the two models are still the same.

Besides the synthetic data, we also tested on real data, the Wisconsin breast cancer data
from UCI dataset. This data contains 699 samples, while 16 samples have missing values so
we do not use, resulting in 683 samples. Among these samples, 444 are benign, we record as
+1 class; 239 are malignant, we record as −1 class. These samples each has 10 attributes,
with the first attribute to be the sample id number, which we do not include into the features.
This results in 9-dimensional features.

To be able to show in figure how the data is distributed, firstly, we use PCA to extract
the first two principle components and get the 2-dimensional data plot in Fig. 5. The −1
malignant class actually has fewer data points than the +1 benign class but the −1 points are
more spread.

The average results for Wisconsin breast cancer data over 20 runs with random partitions
are shown in Table 1. The first subtable is when 20% of the data are used as training and
the remaining 80% are test data; the second subtable is when 80% are training and the
remaining 20% are test. The boxplots of the results are shown in Fig. 6. Both SDP and
SOCPmodels are getting the same result, while SOCPmodel runs more efficiently than SDP
model. When there are more training points, the TSA is higher, but the training time also
increases.
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Table 1 Wisconsin breast cancer data with different training and test partitions

ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.2

20% training, 80% test

Test set accuracy (%) 96.8 ± 0.6 96.4 ± 1.0 96.1 ± 1.1 96.1 ± 1.2

SDP running time 29.0 ± 2.5 26.5 ± 3.2 23.1 ± 3.2 21.1 ± 2.9

SOCP running time 1.3 ± 0.2 1.2 ± 0.3 1.2 ± 0.3 1.2 ± 0.3

80% training, 20% test

Test set accuracy (%) 97.4 ± 0.9 97.1 ± 1.0 97.0 ± 1.1 97.1 ± 1.0

SDP running time 155.6 ± 9.7 141.8 ± 9.1 134.2 ± 13.7 121.4 ± 11.7

SOCP running time 3.3 ± 0.1 4.1 ± 0.2 5.0 ± 0.4 5.8 ± 0.6

Fig. 6 Boxplots of Wisconsin breast cancer data with different training and test partitions

Besides theWisconsin breast cancer data, Ionosphere data is also used in the experiments.
Ionosphere data is 34-dimensional data, with 225 samples for the +1 good class, and 126
samples for the −1 bad class. The first two principle components plot is shown in Fig. 7. It
could be seen that the two classes of data are overlapping with each other.

Since 34 dimensions are time consuming when computing, we used PCA to extract the
first 15 dimensions, then performed both SDP and SOCPmodels on the 15-dimensional data.
The results for the extracted Ionosphere data over 20 runs with random partitions are shown
in Table 2 and Fig. 8. When ε = 0.01, the robust region is too large that the resulting w will
be approximately 0 so the models are not getting meaningful results. Therefore, we used ε =
0.02 instead. From these two tables, SDP and SOCP models are still getting the same result,
while SOCP model runs in less time. The TSA of Ionosphere data is less than the breast
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Fig. 7 First two principle
components of ionosphere data

Table 2 Extracted ionosphere data with different training and test partitions

ε = 0.02 ε = 0.05 ε = 0.1 ε = 0.2

20% training, 80% test

Test set accuracy (%) 84.0 ± 2.5 84.4 ± 2.1 84.1 ± 2.2 84.2 ± 2.2

SDP running time 20.6 ± 1.8 18.3 ± 1.6 18.1 ± 2.1 19.1 ± 2.4

SOCP running time 1.1 ± 0.2 1.1 ± 0.3 1.0 ± 0.3 1.0 ± 0.4

80% training, 20% test

Test set accuracy (%) 86.9 ± 3.6 87.8 ± 3.8 87.2 ± 3.9 87.2 ± 4.3

SDP running time 107.4 ± 7.6 97.9 ± 7.3 96.0 ± 10.0 95.7 ± 8.3

SOCP running time 2.4 ± 0.2 3.0 ± 0.4 3.7 ± 0.5 4.6 ± 0.3

cancer data. This is reasonable seeing from the first two principle components plot of the two
datasets.

5.2 Estimation and performance issues

Considering the estimation errors discussed in Sect. 4, the three cases μi ∈ [μ−
i ,μ+

i ],
(μi − x̄i )�Σ−1

i (μi − x̄i ) ≤ ν2i , and ‖Σ i − Si‖F ≤ ρi were experimented on the tow norm
data, the Wisconsin breast cancer data, and the Ionosphere data. For each data point xi ,
N = 50 replicates xik (k = 1, . . . , N ) were generated with mean equal to the value of the
data point xi , and covariance equal to 0.01 times the covariance of the training dataset. For the
two norm data, since we generated the data using Σ+ = Σ− = I, the replicates generation
covariance used 0.01I.

Then for each data point xi with 50 samples xik , the samplemean x̄i = 1
N

∑N
k=1 xik and the

sample covariance Si = 1
N−1

∑N
k=1(xik −x̄i )(xik −x̄i )� are calculated to estimateμi andΣ i .

When estimation errors are considered, the first case μi ∈ [μ−
i ,μ+

i ], the confidence interval
of μi j is [x̄i j − tcri t · si j/

√
N , x̄i j + tcri t · si j/

√
N ]. We used α = 0.1 in our experiment,

since x̃i ∈ R
n , the Bonferroni correction factor requires α/n for each of the n univariate

confidence interval. Therefore, for the two norm data x̃i ∈ R
2, the tcri t has confidence level
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Fig. 8 Boxplots of extracted ionosphere data with different training and test partitions

Table 3 Performance measure results considering estimation errors

μi = x̄i Σ i = Si μi ∈ [μ−
i , μ+

i ]Σ i = Si μi ∈ E
(
x̄i , νiΣ

1
2
i

)

Σ i = Si
μi = x̄i ‖Σ i − Si‖F≤ ρi

Two norm

NomErr (%) 9.75 ± 3.69 9.63 ± 3.42 9.63 ± 3.61 9.69 ± 3.82

OptErr (%) 12.44 ± 3.92 12.62 ± 3.92 12.46 ± 3.84 12.43 ± 3.75

Time 0.59 ± 0.10 0.74 ± 0.09 0.59 ± 0.09 0.60 ± 0.08

Breast cancer

NomErr (%) 4.16 ± 1.03 3.99 ± 0.83 4.07 ± 0.92 3.66 ± 0.82

OptErr (%) 6.82 ± 0.99 6.61 ± 0.88 6.64 ± 0.89 6.26 ± 0.75

Time 1.94 ± 0.24 6.18 ± 0.77 2.01 ± 0.26 2.10 ± 0.28

Ionosphere data

NomErr (%) 15.21 ± 2.58 15.60 ± 2.17 15.55 ± 2.41 19.15 ± 6.81

OptErr (%) 18.87 ± 2.20 18.92 ± 2.15 18.93 ± 2.21 22.02 ± 5.76

Time 1.35 ± 0.13 5.98 ± 0.69 1.38 ± 0.16 1.37 ± 0.18

of 1−0.05; for the breast cancer data x̃i ∈ R
9, the tcri t has confidence level of 1−0.0111; for

the extracted Ionosphere data x̃i ∈ R
15, the tcri t has confidence level of 1− 0.0067. And all

tcri t s have the degree of freedom N −1 = 49. Model (SVM-SOCP-Mu1)was used to calculate
this case.

For the second case (μi − x̄i )�Σ−1
i (μi − x̄i ) ≤ ν2i , as discussed in Sect. 4, ν2i =

n(N−1)
N (N−n)

Fcrit . Since α = 0.1, all Fcrit s have the confidence level of 1 − 0.1. The degree of
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Fig. 9 Boxplots of performance measure results considering estimation errors

freedom for the two norm data is (2, 48), for the breast cancer data is (9, 41), and for the
breast cancer data is (15, 35). Model (SVM-SOCP-Mu2) was used to calculate this case. For
the third case ‖Σ i − Si‖F ≤ ρi , for each data point xi , ρi was calculated by the Frobenius
norm of the difference between the replicates generation covariance matrix and the sample
covariance matrix. Then model (SVM-SOCP-Cov) was used in this case.

For the performance measures, NomErr and OptErr as discussed in Sect. 4 are used
here. Now each test data point xi has 50 replicates xik . The class label y

pr
i is decided by the

majority label of the replicates sign(w�xik +b). For the OptErr, the sample mean and sample
covariance are used to calculate εopt . We randomly partitioned 20% of the data as training
and the remaining 80% as the test. The results over 20 runs are shown in Table 3 and Fig. 9.

The results show that sinceOptErr considers the probability ofmisclassification evenwhen
the predicted label is correct, OptErr is always bigger than NomErr. NomErr and OptErr do
not have common trends among the four cases (one not considering the estimation error, and
three considering different estimation errors). Forμi ∈ [μ−

i ,μ+
i ], the running time is greater

than the other cases, this makes sense since the model (SVM-SOCP-Mu1) is more complicated
than the other models and it also has the largest robust region.
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6 Conclusion

This paper studied SVM when uncertainties exist in data. Chance constraint is to ensure the
small probability of misclassification of the uncertain data. Robust optimization is to guaran-
tee an optimal performance when the worst-case scenario constraints are still satisfied. This
paper obtained equivalent SDP and SOCP reformulations for the robust chance-constrained
SVMwhen the second-ordermoment information of the uncertain data are known. Optimiza-
tion problems with such kind of data uncertainties can be reformulated and proved similarly.
The SDP reformulation also provides the potential for further extension to joint chance con-
straints where the data points not only have their own distributions, but also correlated with
each other. Numerical experiments showed the equivalence while the SOCP model works
more efficiently. The geometric interpretation of the SOCPmodel shows that the model actu-
ally transformed the chance constraints into robust ellipsoid regions. The estimation errors
are discussed and geometrically interpreted when the mean vector and covariance matrix
are estimated from the data. The models considering estimation errors are also proposed for
different cases.

For further research, the numerical algorithms on big data is a potential direction and
application. Currently, because of availability of such types of data sets, we can only perform
limited numerical experiments on some existed datawith our ownmodifications. In the future,
through proposed approaches, more meaningful results could be obtained on different data
sets.
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